Fundamental group of asymptotic cones of abelian-by-cyclic groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the asymptotic geometry of abelian-by-cyclic groups

Gromov’s Polynomial Growth Theorem [Gro81] states that the property of having polynomial growth characterizes virtually nilpotent groups among all finitely generated groups. Gromov’s theorem inspired the more general problem (see, e.g. [GdlH91]) of understanding to what extent the asymptotic geometry of a finitelygenerated solvable group determines its algebraic structure—in short, are solvable...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

Dimension of Asymptotic Cones of Lie Groups

We compute the covering dimension the asymptotic cone of a connected Lie group. For simply connected solvable Lie groups, this is the codimension of the exponential radical. As an application of the proof, we give a characterization of connected Lie groups that quasi-isometrically embed into a non-positively curved metric space.

متن کامل

Zassenhaus Conjecture for cyclic-by-abelian groups

Zassenhaus Conjecture for torsion units states that every augmentation one torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra QG. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2015

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2014.12.006